
~TE3p55
A GENERAL FUNCTIONAL ANAILYSIS

TO DISPERSIVE STRUCTURES

Jilin Tan and Guangwen Pan

Department of Electrical Engineering

Telecommunications Research Center

Arizona State University

Tempe, AZ 85287-5706

ABSTRACT

A new functional for 3-Dimensional waveguiding struc-

tures with dielectric and conductor losses is rigorously de-

rived. Numerical examples are presented for anisotropic

dielectric image waveguide, PTEE bilateral fin line, and

two coupled asymmetrical dual Iossy transmission lines

with finite conductivity and finite thickness. Agreement

with previous

served.

publications wherever available are ob-

INTRODUCTION

Based on the vector element concept, the full vector func-

tional has been derived and successfully applied to the

lossless guided wave structures [I]. Recently, the three

field component functional has further been developed for

the study of the lossy guided wave structure [2]. In these

studies, the adjoint field in the functional formulation is

either the working variable itself or the complex conjugate

of the working variable.

In this presentation, the unified three field component

functional is formulated in a natural way from the 3D

configuration. The new functional can be applied to the

general 2.5 dimensional guided wave structures, including

lossy or lossless, isotropic or anisotropic cases, and even

with the inhomogeneous boundary conditions.

BASIC THEORY

The 3D functional can be expressed as

+ J@.it-ttit.-i)ds
82

(1)

subject to the following boundary conditions:

where S = S1 U S2, -yP is a frequency dependent parameter

and U could be a generalized known function, according

to the local potential concept [5]. When analyzing the

propagation modes for the guided wave structures, where

uniformity is assumed in the wave propagation direction,

the surface integration on 01 and 02, as shown in Fig.

(1) should vanish since the contributions from these terms

are z coordinate dependent. If the adjoint field is chosen

Fig. 1. 3D structure

to be the field which propagates in the opposite direction,

m
the contribution from the surface integration on 01 would ,

cancel that on 02. Based on [3], the original system and

the special adjoint system can be expressed as

By introducing new variables [1]

(3)
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we end with where, [1] has the entries of

1P(F’) = J[:(vtxG)Z–kga.&.qcm

(4)

where Ip is the functional per unit length, and 1 = /1 U 12,

is the contour of the cross section fl. Source free is also as-

sumed in the expression without losing generality. Equa-

tion (4) is the desired form in describing the eigenvalues

and eigenvectors of the general 2 ~ dimensional disper-

sive and anisotropic waveguiding structures. This new

functional therefore can handle problems with conductors

of finite conductivity and finite cross sections in a lossy

anisotropic dielectric environment under inhomogeneous

boundary conditions, provided 1? = O on the side enclo-

sure. When the ground plane consists of imperfect con-

ductors, the surface impedance boundary condition is ap-

plicable. In this case,

(5)

where e,. and a are respectively the relative permittivity

and conductivity of the thick imperfect conductor. This

relation is also valid at the interface between the thick im-

perfect conductor and the anisotropic dielectric material.

CIRCUIT PARAMETERS

Besides the complex propagation constant, which can be

evaluated using (4), the complex characteristic impedance

is another useful parameter. In the engineering applica-

tions, equivalent circuit parameters are preferred [4]. Once

the eigenvalues and the eigenvectors are obtained from the

edge element procedure, the circuit parameters can be ex-

tracted based on field superposition principle and complex

average power equivalence assumption.

{

[V] [1]-’

[Zc] = [1*’]-1 [p]’ p]-’

[v] [Pm”]-’ [V*’]

[Zci,] = [q+ jti [q

We have,

and

‘{
[V] [J7] [1]-1

[1*’]-’ [Pq’ [r] [1]-1

[v] [r] [P~*]-’ [v*’]

[Y=,,] = [G]+ jw [C]

{

p] [r] [v]-’
—— [V*’]-l [P~*] [r] [v]-’

[I] [r] [P~]-’ [I*’]

(6)

(7)

(8)

The voltage matrix is defined as

and the power matrix is found to be

(9)

(lo)

d; (11)

At high frequencies, the circuit parameters extracted from

P – I definition may be different from those of P – V

definition.

NUMERICAL RESULTS

The edge element method and the subspace iteration

method are used to find the saddle points of the func-

tional. The desired propagation constants and the associ-

ated electromagnetic fields distribution are obtained con-

sequently. Numerical examples are provided to demon-

strate the effectiveness, versatility, and generality of the

new formulas, and to verify that the spurious modes have

been suppressed.

Example 1 Lossy Image Waveguide

A Iossy anisotropic dielectric loaded image waveguide,

as shown in Fig. (2), is presented as our first example.

This structure has been studied by other researchers us-

ing different methods. In the computation, we select the

real part of Cvg as a parameter to study the effect on the

propagation modes. The numerical results are the same as

with the others, but the basic formulation is much simpler

and the effect of the lossy boundary has been included.

Fig. (3) is the attenuation curve, and Fig. (4) is the prop-

agation constant curve. Each curve shown in these figures

takes only a few seconds of CPU time on the DEC AXP

3000 machine.

Fig. 2. Iossy image wave guide

Example 2 Bilateral Finline

As shown in Fig. (5), a bilateral finline constructed

on pFEE material is studied. Both the finline and the

waveguide are made of copper with the conductivity u =

5.72 * 107 S/m. Fig. (6) provides the attenuation con-

stants due to ohmic losses. Fig. (7) shows the propagation

constants versus frequency.
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Fig. 3. propagation for a 10SSY image waveguide
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Fig. 4. attenuation for a 10SSY image waveguide

Example 3 Coupled Asymmetrical Lossy Microstrips

In principle, transmission lines with both ohmic and di-

electric losses may be modeled by the full-wave method

using integral equation approaches. However, it may be

diflicult to find the Green’s functions for complicated ge-

ometries. Even if the Green’s function is found, it may

be uneasy to obtain the complex propagation constants

of the fundamental modes, because the corresponding

eigen equations are transcendental equations with the un-

known eigenvalues being inexplicit parameters. In con-

trast, the edge element method has geometric versatility.

We present a coupled asymmetrical lossy microstrip line

system, shown in Fig. (8), as the third example to illus-

trate the application of the new functional. In this exam-

ple, all the circuit parameters, such as, L, R, C, and G,

as well as the characteristic impedance matrix, are calcu-

lated according to our newly derived
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Fig. 6. attenuation constant of a bilateral finline
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Fig. 7. propagation constant of a bilateral finline

CONCLUSION

In this presentation, a new functional for 3 dimen-

sional structures is derived and applied to a variety of

2.5D guided wave devices. Ohmic and. dielectric losses

are treated systematically and consistently under the full

wave regime. An extended boundary condition of the third

kind is proposed and employed for the open structures to

confine the computational region with success. The sub-

space iteration method is used to handle large scale gener-

alized complex eigenvalue problems. Numerical examples

of waveguides and transmission lines folc digital and mil-

limeter wave applications are presented.
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Fig. 9. propagation modes

Coupled Microstrip Lines
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Fig, 11. characteristic impedances

Coupled Microstrip Lines

1.,*.Y““d Ahytnn,ctr,c”l
41MI.O !,.

,(”)., R ,, , ~

/ .*.*
.“

ll.$)(,~,:*
10.11 20.(1 31>.0 411.()

4,”,.,!

*.*

3(MI.(1,
A.+

~
.

“~ 21NI.O

g’

~’

IIMI.U .

.,. ,,

P,ww”q t“ GH,

Fig. 12. line resistance

Coupled Microstrip Lines
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Fig. 13. line inductance
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Coupled Microstrip Lines
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Fig. 14. line capacitance

Coupled Microstrip Lines
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