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ABSTRACT

A new functional for 3-Dimensional waveguiding struc-
tures with dielectric and conductor losses is rigorously de-
rived. Numerical examples are presented for anisotropic
dielectric image waveguide, PTEE bilateral fin line, and
two coupled asymmetrical dual lossy transmission lines
with finite conductivity and finite thickness. Agreement
with previous publications wherever available are ob-
served.

INTRODUCTION

Based on the vector element concept, the full vector func-
tional has been derived and successfully applied to the
lossless guided wave structures {1]. Recently, the three
field component functional has further been developed for
the study of the lossy guided wave structure [2]. In these
studies, the adjoint field in the functional formulation is
either the working variable itself or the complex conjugate
of the working variable.

In this presentation, the unified three field component
functional is formulated in a natural way from the 3D
configuration. The new functional can be applied to the
general 2.5 dimensional guided wave structures, including
lossy or lossless, isotropic or anisotropic cases, and even
with the inhomogeneous boundary conditions.

BASIC THEORY
The 3D functional can be expressed as
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and U could be a generalized known function, according
to the local potential concept [5]. When analyzing the
propagation modes for the guided wave structures, where
uniformity is assumed in the wave propagation direction,
the surface integration on O; and O, as shown in Fig.
(1) should vanish since the contributions from these terms
are z coordinate dependent. If the adjoint field is chosen

Fig. 1. 3D structure

to be the field which propagates in the opposite direction,
the contribution from the surface integration on O; would
cancel that on Oj. Based on [3], the original system and
the special adjoint system can be expressed as
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By introducing new variables [1]
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where I, is the functional per unit length, and I = 1; Uiy,
is the contour of the cross section €. Source free is also as-
sumed in the expression without losing generality. Equa-
tion (4) is the desired form in describing the eigenvalues
and eigenvectors of the general 2% dimensional disper-
sive and anisotropic waveguiding structures. This new
functional therefore can handle problems with conductors
of finite conductivity and finite cross sections in a lossy
anisotropic dielectric environment under inhomogeneous
boundary conditions, provided U = 0 on the side enclo-
sure. When the ground plane consists of imperfect con-
ductors, the surface impedance boundary condition is ap-
plicable. In this case,
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where €,. and o are respectively the relative permittivity
and conductivity of the thick imperfect conductor. This
relation is also valid at the interface between the thick im-
perfect conductor and the anisotropic dielectric material.

CIRCUIT PARAMETERS

Besides the complex propagation constant, which can be
evaluated using (4), the complex characteristic impedance
is another useful parameter. In the engineering applica-
tions, equivalent circuit parameters are preferred [4]. Once
the eigenvalues and the eigenvectors are obtained from the
edge element procedure, the circuit parameters can be ex-
tracted based on field superposition principle and complex
average power equivalence assumption. We have,
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where, [I] has the entries of
Ly= j{ g*.dl
The voltage matrix is defined as
Vi = / E*.dl
and the power matrix is found to be
{P™}; = // Er x H™ -dg
At high frequencies, the circuit parameters extracted from

P — I definition may be different from those of P — V
definition.
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NUMERICAL RESULTS

The edge element method and the subspace iteration
method are used to find the saddle points of the func-
tional. The desired propagation constants and the associ-
ated electromagnetic fields distribution are obtained con-
sequently. Numerical examples are provided to demon-
strate the effectiveness, versatility, and generality of the
new formulas, and to verify that the spurious modes have
been suppressed.

Example 1 Lossy Image Waveguide

A lossy anisotropic dielectric loaded image waveguide,
as shown in Fig. (2), is presented as our first example.
This structure has been studied by other researchers us-
ing different methods. In the computation, we select the
real part of €y, as a parameter to study the effect on the
propagation modes. The numerical results are the same as
with the others, but the basic formulation is much simpler
and the effect of the lossy boundary has been included.
Fig. (3) is the attenuation curve, and Fig. (4) is the prop-
agation constant curve. Each curve shown in these figures
takes only a few seconds of CPU time on the DEC AXP
3000 machine.

—

Fig. 2. lossy image waveguide

Example 2 Bilateral Finline

As shown in Fig. (5), a bilateral finline constructed
on PFEE material is studied. Both the finline and the
waveguide are made of copper with the conductivity o =
5.72 x 10" S/m. Fig. (6) provides the attenuation con-
stants due to ohmic losses. Fig. (7) shows the propagation
constants versus frequency.
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Fig. 3. propagation for a lossy image waveguide
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Fig. 4. attenuation for a lossy image waveguide

Example 3 Coupled Asymmetrical Lossy Microstrips

In principle, transmission lines with both ohmic and di-
electric losses may be modeled by the full-wave method
using integral equation approaches. However, it may be
difficult to find the Green’s functions for complicated ge-
ometries. Even if the Green’s function is found, it may
be uneasy to obtain the complex propagation constants
of the fundamental modes, because the corresponding
eigen equations are transcendental equations with the un-
known eigenvalues being inexplicit parameters. In con-
trast, the edge element method has geometric versatility.
We present a coupled asymmetrical lossy microstrip line
system, shown in Fig. (8), as the third example to illus-
trate the application of the new functional. In this exam-
ple, all the circuit parameters, such as, L, R, C, and G,
as well as the characteristic impedance matrix, are calcu-
lated according to our newly derived formulation.

Fig. 5. bilateral finline configuration
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Fig. 6. attenuation constant of a bilateral finline
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Fig. 7. propagation constant of a bilateral finline

CONCLUSION

In this presentation, a new functional for 3 dimen-
sional structures is derived and applied to a variety of
2.5D guided wave devices. Ohmic and dielectric losses
are treated systematically and consistently under the full
wave regime. An extended boundary condition of the third
kind is proposed and employed for the open structures to
confine the computational region with success. The sub-
space iteration method is used to handle large scale gener-
alized complex eigenvalue problems. Numerical examples
of waveguides and transmission lines for digital and mil-
limeter wave applications are presented.
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Fig. 8. dual microstrip lines



Coupled Microstrip Lines
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Fig. 9. propagation modes
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Fig. 10. attenuation modes
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Fig. 11. characteristic impedances
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Coupled Microstrip Lines
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Fig. 12. line resistance
Coupled Microstrip Lines
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Fig. 13. line inductance
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Fig. 14. line capacitance
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Fig. 15. line conductance



